Experimental Investigation of Viscous Two-Phase Flow in Microchannels
نویسندگان
چکیده
Multi-port microchannel tubes are increasingly popular for use in a variety of heat transfer applications, primarily for automotive condensers and radiators, but also in a variety of refrigeration and air conditioning applications. These channels offer a greater surface area to volume ratio, providing for enhanced heat transfer over a conventional tube in many applications. Previous research has focused on characterizing the performance of such tubes for two-phase refrigerant flow. Most studies have focused on pure refrigerant flow, but in most applications, as a third viscous " phase " will be present in the form of lubricating oil. Much research has been done to account for the effects of increased viscosity due to the presence of oil in the flow, but the effects of viscosity in microchannels rather than larger conventional tubes remain largely unexplored. The goal of this study is to investigate the qualitative and quantitative effects of the presence of oil within the refrigerant for two-phase flow in multi-port, extruded aluminum microchannel tubes. Three techniques are used to characterize these effects. Flow visualization experiments, using a transparent test section, demonstrate the flow configuration between the ports and flow regime within individual ports. Additionally, experimental adiabatic pressure drop and void fraction measurements – performed for a variety of fluids and flow conditions – quantitatively characterize the behavior of the refrigerant-oil mixture in two-phase flow. Experimental results demonstrate a stark change in the flow when viscosity of the liquid phase is increased. These are noted by a change in the observed flow patterns, increased pressure drop, and depressed void fraction as compared to less viscous conditions. These trends cause significant departures from the behaviors characterized in many existing predictive correlations, and present a challenge to incorporate viscosity into modified correlations.
منابع مشابه
The Effect of Viscous Dissipation and Variable Properties on Nanofluids Flow in Two Dimensional Microchannels
Laminar two dimensional forced convective heat transfer of Al2O3 –water nanofluid in a horizontal microchannel has been studied numerically, considering axial conduction, viscous dissipation and variable properties effects. The existing criteria in the literature for considering viscous dissipation in energy equation are compared for different cases and the most proper one is applied for the re...
متن کاملSubcooled two-phase flow boiling in a microchannel heat sink: comparison of conventional numerical models
Subcooled flow boiling in multi-microchannels can be used as an efficient thermal management approach in compact electrical devices. Highly subcooled flow boiling of HFE 7100 is studied in two microchannel heat sinks to choose a proper numerical model for simulating boiling flows in microchannels. Results of five different numerical models, including Volume of Fluid (VOF), Eulerian boiling, Eul...
متن کاملA NUMERICAL STUDY OF SINGLE-PHASE FORCED CONVECTIVE HEAT TRANSFER WITH FLOW FRICTION IN MICROCHANNELS (RESEARCH NOTE)
Three-dimensional simulations of the single-phase laminar flow and forced convective heat transfer of water in microchannels with small rectangular sections having specific hydraulic diameters and distinct geometric configurations were investigated numerically. The numerical results indicated that the laminar heat transfer was to be dependent upon the aspect ratio and the ratio of the hydraulic...
متن کاملViscous Models Comparison in Water Impact of Twin 2D Falling Wedges Simulation by Different Numerical Solvers
In this paper, symmetric water entry of twin wedges is investigated for deadrise angle of 30 degree. Three numerical simulation of a symmetric impact, considering rigid body dynamic equations of motion in two-phase flow is presented. The two-phase flow around the wedges is solved by Finite Element based on Finite Volume method (FEM-FVM) which is used in conjunction with Volume of Fluid (VOF) sc...
متن کاملPropionic acid extraction in a microfluidic system: simultaneous effects of channel diameter and fluid flow rate on the flow regime and mass transfer
In this work, extraction of propionic acid from the aqueous phase to the organic phase (1-octanol) was performed in T-junction microchannels and effects of channel diameter and fluid flow rate on the mass transfer characteristics were investigated. The two-phase flow patterns in studied microchannels with 0.4 and 0.8 mm diameters were observed. Weber number and surface-to-volume ratio were ca...
متن کامل